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Photoacoustic image reconstruction based on
Bayesian compressive sensing algorithm
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The photoacoustic tomography (PAT) method, based on compressive sensing (CS) theory, requires that,
for the CS reconstruction, the desired image should have a sparse representation in a known transform
domain. However, the sparsity of photoacoustic signals is destroyed because noises always exist. Therefore,
the original sparse signal cannot be effectively recovered using the general reconstruction algorithm. In
this study, Bayesian compressive sensing (BCS) is employed to obtain highly sparse representations of
photoacoustic images based on a set of noisy CS measurements. Results of simulation demonstrate that the
BCS-reconstructed image can achieve superior performance than other state-of-the-art CS-reconstruction
algorithms.
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Photoacoustic imaging, in recent times, has emerged
as a promising imaging technique for biomedical
applications[1]. Several physiologically important
molecules, such as hemoglobin, possess a high charac-
teristic absorption; therefore, photoacoustic imaging pro-
vides superlative quality images of vasculature and hemo-
dynamic functions in vivo[2−5]. In photoacoustic imag-
ing, a pulsed broad laser beam illuminates the biologi-
cal tissue to generate a rapid increase in temperature.
The resultant thermoelastic expansion leads to the emis-
sion of short-wavelength pulsed ultrasonic waves. These
acoustic waves are detected by ultrasonic transducers,
and an image is then reconstructed from signals recorded
at different locations surrounding the tissue.

In photoacoustic tomography (PAT) imaging, the re-
construction algorithms existing for circular tomography
require a great number of measurements, which require
complex and expensive electronic equipments. In addi-
tion, it is almost impossible to cover the entire surface
of tissue in practice; therefore, the data can often be
acquired from limited view angles. To resolve such limit-
ing factors, Provost et al. demonstrated that the theory
of compressive sensing (CS) can be used for reconstruc-
tion in PAT by using a small number of angles[6]. Liang
et al. applied the CS theory to address the issue of arti-
facts in limited-view imaging and to reduce the number
of random illuminations for fast data-acquisition[7]. Guo
et al. incorporated the CS theory in the PAT reconstruc-
tion. Both phantom and in vivo results showed that the
CS method can effectively reduce the number of under-
sampling artifacts[8].

Nonetheless, in practice, photoacoustic signals are of-
ten polluted by noises[9]. Noisy signals are not strictly
sparse signals, but they are compressible signals. In the
abovementioned CS-based PAT theory, basis functions
that are once added are never removed. A successful ap-
plication of CS requires that the desired image must have
a sparse representation in a known transform domain;
however, the noise destroys the sparsity of photoacoustic
signals. In such noisy conditions, the original sparse sig-

nal cannot be effectively recovered.
In this letter, a Bayesian compressive sensing (BCS)

method is employed to obtain highly sparse representa-
tions of photoacoustic images based on a set of noisy
CS measurements. It has been demonstrated, in the
sparse Bayesian learning literature, that utilization of the
relevance vector machine (RVM)[10] can facilitate more
effective resolution of problems in CS[11].

Based on the CS method, if a given image f is com-
pressible in a transform basis function Ψ, it is possible to
perform a compressed set of measurements y: in case of
CS measurements corrupted by an approximated zero-
mean Gaussian noise n with unknown variance σ2, CS
measurements may be represented as

y = Φω + n, (1)

where Φ = [ϕ1, · · · , ϕN ] is an M×N matrix, based on the
assumption that M random CS measurements are made.
Therefore, if ω represents weights with the smallest N -M
(M ¿ N) coefficients set to zero, the reconstruction of f
from y reduces to estimation of the sparse weight vector
ω.

A typical method for solving such an ill-posed problem
is via the lp norm of ω:

ω̃ = arg min
ω
{‖ y − Φω ‖22 +ρ ‖ ω ‖p}, (2)

where the scalar ρ (0 6 p 6 1) controls the relative im-
portance applied to the Euclidian error and the sparse-
ness term.

Under the common assumption of a zero-mean Gaus-
sian noise, the Gaussian likelihood model can be obtained
as

p(y
∣∣ω,σ

2 ) = (2πσ2)−M/2 · exp(− 1
2σ2

‖ y − Φω ‖2). (3)

In the above analysis, the CS problem of inverting for
the sparse weights ω is converted into a linear-regression
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problem with the constraint that ω is sparse. Assum-
ing that Φ is known, quantities that are to be estimated
based on the CS measurements y are the sparse weights
ω and the noise variance σ2. In a Bayesian analysis, this
is equivalent to seeking a full posterior density function
for ω and σ2.

The l1 regularization formulation is equivalent to using
a Laplace density function prior on the coefficients ω,
that is

p(ω |λ ) =
λ

2
exp(−λ |ω|). (4)

Given the CS measurements y, and assuming the like-
lihood function in Eq. (3), it can be demonstrated in
a straightforward manner that the solution in Eq. (2)
corresponds to a maximum a posteriori (MAP) approxi-
mation to a Bayesian linear-regression analysis. However,
this formulation of the Laplace prior does not allow for a
tractable Bayesian analysis, because it is not a conjugate
to the conditional distribution in Eq. (3). To alleviate
this issue, RVM has been addressed previously in sparse
Bayesian learning. As the first stage of a hierarchical
model, the following prior is employed on ω:

p(ω |α ) =
N∏

i=1

N(ωi

∣∣0, α−1
i ), (5)

where αi is the precision of a Gaussian density function.
Further, a Gamma prior is considered over α:

p(α |a, b ) =
N∏

i=1

Γ(αi |a, b ). (6)

By marginalizing over the hyper-parameters α, the
overall prior on ω is

p(ω |a, b ) =
N∏

i=1

∫ ∞

0

N(ωi

∣∣0, α−1
i )Γ(αi |a, b )dαi, (7)

where the density function Γ(αi |a, b ) is the conjugate
prior for αi, ωi plays the role of observed data, and
N(ωi

∣∣0, α−1
i ) is a likelihood function. Consequently, the

integral
∫∞
0

N(ωi

∣∣0, α−1
i )Γ(αi |a, b )dαi can be evaluated

analytically, and it can be found to correspond to the Stu-
dent’s t-distribution. With appropriate choice of a and
b of λ, the Student’s t-distribution is strongly peaked
around ωi = 0; therefore, the prior in Eq. (7) favors
most ωi being zero, and the inverse of the noise variance
α0 = 1/σ2 is introduced by the Gamma prior.

By combining the stages of the hierarchical Bayesian
model, the joint distribution can, finally, be defined as

p(ω, α, λ, σ2, y) = p(y
∣∣ω, σ2 )p(ω |α )p(α |a, b )p(a, b).

(8)
By Bayes’ rule, assuming that the hyper-parameters α

and α0 are known and the measurement value g and the
projection matrix Φ are given, then ω can be expressed
as a multivariate Gaussian distribution p(ω

∣∣y, α, σ2 ) ∝
N(µ,

∑
) with mean and covariance of

µ = α0

∑
ΦTy, (9)

∑
= (α0ΦTΦ + A)−1, (10)

where A = diag(α1, α2, · · · , αN ). Specifically, by
marginalizing over the weights ω, the logarithm L(α, α0)
for α and α0 can be expressed analytically as

L(α, α0) = log p(g |α, α0 ) = log
∫

p(g |ω, α0 )p(ω |α )dω

= −1
2
[K log 2π + log |C|+ gTC−1g], (11)

where C = σ2I + ΦA−1ΦT (I denotes the orignal im-
age), a type-II maximum likelihood (ML) approxima-
tion employs point estimates for α and α0 to maximize
Eq. (11), which can be implemented via the expectation-
maximization (EM) algorithm to yield the optimal value.

It is useful to have a measure of uncertainty in the mean
and covariance of the weights ω; however, the quantity
that draws most interest is the signal y = Φω. ω is drawn
from a multivariate Gaussian distribution with mean and
covariance defined in Eqs. (8) and (9); therefore, the pos-
terior density function on f is also a multivariate Gaus-
sian distribution with mean and covariance of

E(f) = Ψµ, (12)

Cov(f) = Ψ
∑

ΨT. (13)

The diagonal elements of the covariance matrix in Eq.
(13) provide “error bars” on the accuracy of the inversion
of f , as represented in terms of its mean in Eq. (12).

Natural images can often be compressed with slight or
imperceptible loss of information[12]. Most PAT images
are sparse in an appropriate transform domain[5]. As a
consequence, photoacoustic signals and images can be
reconstructed with good accuracy from relatively few
measurements by the BCS method.

The BCS method is applied to PAT imaging from an
arc mask data acquisition. Figure 1 depicts the diagram
of photoacoustic data acquisition in the BCS method
with a single transducer. This method requires an opti-
cal mask to realize random illumination in data acqui-
sition and utilizes the sparsity of photoacoustic images
in the reconstruction. The objective for the use of ran-
dom illumination is to realize the compression of data
along the arc and to reduce the acquisition time. The
mask is placed between the laser source and the sample
to realize the sparse measurement Φ. It transfers the
diversity of measure to realize the exact recovery. To re-
alize the random illumination of the sample, the optical
arc mask uses the digital micro-mirror device (DMD),
which is modulated according to the Gaussian random
matrix by the computer. The mask changes its optical
absorption-distribution pattern randomly for each laser
light pulse. In addition, the single-element unfocused
ultrasonic transducer can record photoacoustic signals
for each mask pattern. The Gaussian random matrix is
maximally incoherent with any sparsity transform, and
therefore, it can be modeled as the random binary Gaus-
sian distribution-measurement matrix to decide whether
light passes through the mask.

061002-2



COL 9(6), 061002(2011) CHINESE OPTICS LETTERS June 10, 2011

Fig. 1. Data acquisition illustration of the proposed BCS
method.

In the course of photoacoustic image reconstruction,
the transducer has a limited view via a sector window;
therefore, the photoacoustic signals achieved are superpo-
sitions of the signal along the arc line. When the sample
is fully enclosed in the detection region, accurate recov-
ery is possible from the sparse signal. Further, it requires
fewer signals in the near field and more signals in the far
field to complete the image reconstruction. Therefore,
the matrix Φ can be suitably modified for the scanned
photoacoustic sample area. From Fig. 1, it is apparent
that the matrix elements outside the sector window can
be defined as 0, and the matrix elements inside the sec-
tor window can be defined as 0/1, subject to Gaussian
distribution. Therefore, the modified matrix Φm can not
only improve the sparsity and inherence with Ψ, but also
lower the mask cost and improve the photoacoustic im-
age quality because of its specific pattern.

The generated acoustic waves along the same arc ar-
rive at the transducer simultaneously, and therefore, sig-
nals that are achieved are the information superposition
along the arc direction. Thus, photoacoustic signals are
collected by a single-element transducer in polar coor-
dinates. Therefore, following BCS reconstruction, these
images should undergo the scan conversion; the course
for this is presented in Fig. 2, and, if (x, y) is the posi-
tion of the final photoacoustic image, the conversion to
(R, θ) is

x = x0 −R sin θ, y = R cos θ, (14)

where θ is the deflection angle and (R, θ) is the polar
coordinates corresponding to the Cartesian coordinates
(x, y).

Fig. 2. Schema of scan conversion.

To prove the efficacy and superiority of the BCS
method in PAT image reconstruction, photoacoustic sig-
nals were simulated by the K-wave Matlab toolbox[13].

In the experiment, the matrix can be implemented by
a DMD as a mask. The sample was non-uniformly il-
luminated realized by the mask. The spatial pattern of
the mask can be altered by the digital logical control cir-
cuit, which can create the time-varying switch array. The
BCS algorithm was used to reconstruct PAT images with
a size of 256×256 pixels, as shown in Fig. 3(a). These
images were scarified in the discrete wavelet transform
(DWT) domain by decomposing them in five scales using
the “sym4” wavelet. With the exception of the original
image (noiseless), three noisy versions were generated by
adding a zero-mean Gaussian noise, and this resulted in
signal-to-noise ratios (SNRs) of 5, 10, and 15 dB.

In these experiments, the performance of BCS was com-
pared with the basis pursuit (BP), orthogonal matching
pursuit (OMP) and stagewise orthogonal matching pur-
suit (STOMP) algorithms. The STOMP algorithm was
equipped with the constant false discovery rate (CFDR)
and the constant false alarm rate (CFAR) thresholding
rules. Certain CS methods were applied to the compres-
sive measurements y to reconstruct the PAT image, as
shown in Figs. 3(b)–(f).

The quality of the reconstructed image is measured via
the reconstruction error, which is defined as follows:

ER =
‖ ICS − I ‖2
‖ I ‖2 , (15)

where I and ICS denote the original and reconstructed
images and ‖ I ‖2 denotes the two-norm of the image I.

Results depicted in Fig. 3 indicate that the reconstruc-
tion of the photoacoustic image from STOMP algorithm
represents the worst performance, which cannot obtain
the source-image details and has serious artifacts, and
this make it an unsuitable algorithm for PAT. Further,
the full performance comparisons are summarized in Ta-
ble 1, and it shows the respective reconstruction error
and running time for BP, OMP, and BCS when using

Fig. 3. Reconstruction of photoacoustic image from different
CS methods using 100 masks. (a) Original image; (b) re-
construction from BP; (c) reconstruction from OMP; (d) re-
construction from STOMP-CFDR; (e) reconstruction from
STOMP-CFAR; (f) reconstruction from BCS.
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Table 1. Reconstruction Performances of BP, OMP,
and BCS Methods on PAT Images in Terms of
Reconstruction Error ER and Running Time t

PAT BP Method OMP Method BCS Method

Images ER t(s) ER t(s) ER t(s)

Noiseless 0.4205 17.4067 0.4446 3.8852 0.3099 10.1153

SNR=15 dB 0.5844 23.5089 0.5869 4.2557 0.4101 14.9492

SNR=10 dB 0.6240 25.1564 0.5899 4.7917 0.4603 16.3291

SNR=5 dB 0.6472 25.3660 0.6631 4.5291 0.4811 17.0752

 

Fig. 4. Reconstruction errors for different CS algorithms. (a)
Noiseless observation; (b) noisy observation with SNR=15 dB;
(c) noisy observation with SNR=10 dB; (d) noisy observation
with SNR=5 dB.

100 masks. Figure 4 shows the tendency chart of recon-
struction errors in reconstructed photoacoustic images
obtained from the three CS reconstruction methods un-
der four different conditions. It can be demonstrated
that the BCS algorithm has a lesser running time as
well as the minimum reconstruction error. Therefore, the
BCS method can not only use the fewest measurements
to obtain the best performance, but also maintain the
best effects irrespective of whether PA signals are noise-
less or noisy.

It is notable that the BCS method does not require
parameter turning, while the other CS methods require
estimation of algorithm parameters from their measure-
ments. In these four sets of experiments, the test was
repeated 100 times and the average was expressed by the
reconstruction error. It is clear that the BCS method
provides the best performance among all the methods
tested, and it has the smallest reconstruction error with
a minimum number of measurements. Compared with

other CS methods, the BCS method provides an estima-
tion of the posterior density function of additive noise
in CS measurements and uses the fast RVM algorithm
with an objective to achieve highly efficient computa-
tions. The fast algorithm maintains a more concise sig-
nal representation and the RVM provides a tighter ap-
proximation to the l0-norm sparsity measure than the
l1-norm. It can be proved that, even in the worst-case
scenario, the RVM still outperforms the most widely used
sparse representation algorithms, including BP, OMP,
and STOMP. Therefore, the BCS method provides the
best reconstructed image of PAT among all CS methods.

In conclusion, by incorporating the BCS method in
PAT image reconstruction, only one single-element un-
focused ultrasonic transducer is employed. As a result,
the PAT system becomes simpler. In particular, the
proposed algorithm can automatically estimate the opti-
mal model parameters from observation data and demon-
strates better performance than the other state-of-the-art
CS algorithms.

This work was supported by the National Natu-
ral Science Foundation of China (No. 30800240), the
Shandong Provincial Key Science-Technology Project
(No. 2009GG10001006), the Shandong Provincial Pro-
motive Research Fund for Excellent Young and Middle-
Aged Scientists (No. BS2010DX001), and the Weihai
City Science and Technology Development Project (No.
2010-3-96).

References

1. L. V. Wang, Med. Phys. 35, 5758 (2008).

2. K. Geng, “Photoacoustic and thermoacoustic tomogra-
phy: system development for biomedical applications”
PhD. Thesis (Texas A&M University, College Station,
2004).

3. L. V. Wang, Disease Markers 19, 123 (2004).

4. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt.
Lett. 33, 929 (2008).

5. X. Yang, X. Cai, K. Maslov, L. Wang, and Q. Luo, Chin.
Opt. Lett. 8, 609 (2010).

6. J. Provost and F. Lesage, IEEE Trans. Med. Imaging
28, 585 (2009).

7. D. Liang, H. F. Zhang, and L. Ying, Int. J. Function.
Inform. Personal. Med. 2, 394 (2009).

8. Z. Guo, C. Li, L. Song, and L. V. Wang, J. Biomed. Opt.
15, 021311 (2010).

9. Z. Ren, G. Liu, Z. Huang, W. Zeng, and D. Li, Proc.
SPIE 7382, 73822R (2009).

10. J. Feng, K. Jia, C. Qin, S. Zhu, X. Yang, and J. Tian,
Chin. Opt. Lett. 8, 1010 (2010).

11. S. Ji, Y. Xue, and L. Carin, IEEE Trans. Signal Process.
56, 2346 (2008).

12. M. G. Strintzis, Int. J. Med. Inform. 52, 159 (1998).

13. B. E. Treeby and B. T. Cox, J. Biomed. Opt. 15, 021314
(2010).

061002-4


